The combined analysis of food type and morphological features of the mouthparts and accessory feeding appendages allows conclusions concerning food preference (Agrawal, 1965). Mouthpart morphology and feeding strategy have been studied from the ecological perspective by several authors on various amphipod families (e.g., Dennell (1933) on Haustoriidae; Nicolaisen and Kanneworff (1969) on Pontoporiidae; Caine (1974) on Caprellidae; Dahl (1979) on Lysianassidae; McGruther (1983) on Hyalidae; Coleman (1987) on Acantontothozomatidae; Moore and Rainbow (1989) on Stegocephalidae; Morino et al. (2000) on Gammaridae). The present study examines the feeding ecology of four amphipod species, which belong to three different genera and three different families, but co-occur in sea ice. Onisimus nanseni (formerly Pseudalibrotus nanseni), O. glacialis (Lysianassidae), Gammarus wilkitzkii (Gammaridae) and Apherusa glacialis (Calliopiidae) have been identified as autochthonous sympagic organisms (Melnikov and Kulikov, 1980; Gulliksen and Lønne, 1989) that feed, reproduce, and release their offspring at the underside of sea ice. They are the major macrofaunal constituents of the sympagic ecosystem. Their co-occurrence in sea ice suggests some sort of resource partitioning and/or interspecific competition.

Even one and a half centuries after the discovery of the ice-bound ecosystem (Horner, 1976), the ecology of these four amphipod species, and in particular of Onisimus spp. and Apherusa glacialis, is only poorly known. The macrofaunal abundance in Arctic sea ice ranges from 0 to 490 ind. m⁻² corresponding to biomass values of over 20 g WM m⁻² (reviewed in Arndt and Lønne, 2002). Gammarus wilkitzkii has the longest life span among sympagic amphipods, living up to six years (Beuchel and Lønne, 2002). Life spans range between two years for A. glacialis (Beuchel and Lønne, 2002) and three to four years for O. nanseni and O. glacialis, respectively (Arndt and Beuchel, in prep.).

Several studies have focused on diet and feeding behaviour of G. wilkitzkii and—to a minor extent—A. glacialis because these species are relatively more abundant than Onisimus spp. (Arndt and Lønne, 2002) and convenient to keep in the laboratory for feeding experiments (Poltermann, 2001; Arndt, 2002; Werner et al., 2002). Gammarus wilkitzkii and A. glacialis clearly separate by food preference and acquisition (e.g., Poltermann, 2001; Werner et al., 2002). In situ observations are almost impossible on O. nanseni and O. glacialis because these species are difficult to identify without dissecting them. As a consequence, they have been treated combined as Onisimus spp. in earlier studies (Gulliksen, 1984; Lønne and Gulliksen, 1991a, b; Werner, 1997a). Various methodological approaches are available for analyzing the feeding ecology of Crustacea: in situ observations, gut-content analysis, lipid analysis, stable isotope analysis, descriptions of mouthpart morphology, feeding experiments in the laboratory. Few studies have examined the morphology of mouthparts and their functional role in sympagic amphipods (Poltermann, 2001; Arndt, 2002). We therefore present herein the complete description of the mouthparts and accessory feeding appendages of autochthonous sympagic amphipods. The purpose of this study is to evaluate the trophic niches of the four co-occurring species by combining morphological peculiarities with a review of available information on species distribution and feeding ecology.
MATERIALS AND METHODS
All amphipods were sampled in the High Arctic ice pack north of Svalbard (Norway). The mouthparts and accessory feeding appendages of ethanol-preserved specimens were dissected and figured. Some of the extracted appendages were then placed in an ultrasonic cleaner to remove debris clinging to the amphipod. For scanning electron microscopy (SEM: LEO 1525), the appendages were dehydrated through an alcohol series and dried using liquid carbon dioxide as the exchange medium, then critical point dried and sputter-coated with gold.

RESULTS
Onisimus nanseni (Sars, 1900)

Description.—Mature female (Fig. 1), body length 23.5 mm, 81.1°N 31.1°E, 25 Sept 2000, RV Jan Mayen.
Mouthpart bundle (Fig. 2a): Subquadrate.
Labrum: Well developed, lower edge rounded, covered with setulae.
Mandible (Fig. 2b, c): Body bowl-shaped, incisors symmetrical, with slightly convex margins; left lacinia mobilis present as robust peg, slightly bifurcate; accessory spine row absent; molar columnar with fully triturative surface, partly surrounded by ring of dense short setae; palp opposite to molar, 3-articulate, second and third article with long simple setae.

Gammarus wilkitzkii

Fig. 1. Habitus illustration and size relationships of the four autochthonous sympagic amphipod species.
Paragnath: 2-lobed, with setulae.
Maxilla 1 (Fig. 2d, e): Inner plate short and narrow, with 2 plumose apical setae; outer plate setose with 11 setal-teeth in 7/4 crown-arrangement, cuspidate, basal row of short simple setae; palp large, setose, 2-articulate, article 2 multifurcate distally, with 6 robust setae and 1 simple flag seta.
Maxilla 2 (Fig. 2f): Inner plate slender and short, outer plate broad; inner plate setose, with 1 plumose, 6 pappose, and 8 cuspidate setae arranged in 2 rows, rows separated by
row of short simple setae; outer plate setose, with long simple and pappose setae along medial and apical margin.

Maxillipeds (Fig. 2g): Outer plate slender, short, with pappose and simple setae along medial and apical margins; inner plate large, crescent shaped, with 1 apical simple seta in line with nodular setae; palp strongly exceeding outer plate, with bunches of long setae; dactylus well developed, with subterminal setae.

Gnathopod 1 (Fig. 2h): Subchelate, palm oblique; propodus with long setae; dactylus stout, with inner edge minutely serrate with stout, short spine; palm with rows of small setae.

Gnathopod 2 (Fig. 2i): Subchelate, palm transverse; propodus rectangular-shaped, with dense comb-like setae, 2 bunches of long simple setae inserting near joint and tip of dactylus, short fan-like setae at joint of dactylus; dactylus claw-like; palm obtuse.

Onisimus glacialis (Sars, 1900)

Description.—Mature male (Fig. 1), body length 42.5 mm, 80.3°N 4.4°E, 28 Sept 2002, RV Jan Mayen.

Mouthpart bundle (Fig. 4a): Subquadrate.

Labrum: Well developed, lower edges rounded, apical setae.

Mandible (Fig. 4b–d): Cutting edges asymmetrical; left incisor 5-toothed, right 4-toothed; left lacinia mobilis 4-toothed, right bifurcate, with 5 + 2 teeth; setal row well developed, strong cuspidate and pappose setae; molar columnar with fully triturative surface, partly surrounded by dense, short setae; palp inserts opposite setal row, 3-articulate, all articles with long pappose setae.

Paragnath: 2-lobed, medial and apical setae.

Maxilla 1 (Fig. 4e, f): Inner plate oval, setose, with dense row of long plumose setae along medial margin; outer plate robust, setose, 11 strong cuspidate setae in 2 parallel rows; palp 2-articulate, first article short, second article with 6 apical spines, 1 flag seta, and 5 long simple setae, medial row of 5 long simple setae.

Maxilla 2 (Fig. 4g): Inner plate large, inflated, setose, medial row of long plumose setae along medial margins, terminal setae cuspidate, setae in second layer pappose and cuspidate; outer plate large, plane, setose, apical setae long and cuspidate.

Maxillipeds (Fig. 4h): Inner plate slender, setose, median margin with long pappose setae, apical margin with 3 strong terminal spines and 2 rows of long simple setae and long pappose setae; outer plate large, crescent shaped, setose, medial and apical margins with strong spines and long pappose setae; palp robust, exceeding outer plate, with bunches of strong simple setae; at base of dactylus long pappose setae; dactylus robust, with long subterminal setae.

Gnathopod 1 (Fig. 4i): Subchelate, palm oblique; propodus stout, robust, with bunches of long setae facing dactylus; dactylus strong, claw-like; palm with lamellar crest and rows of simple setae and single spines.

Gnathopod 2: Subchelate, palm transverse; morphology equal to gnathopod 1.

Apherusa glacialis (Hansen, 1888)

Description.—Mature female (Fig. 1), body length 13.0 mm, 81.6°N 18.5°E, 19 Sept 2002, RV Jan Mayen.

Mouthpart bundle (Fig. 5a): Subquadrate
Labrum: Well developed, lower edges rounded, apical setulae. Mandible (Fig. 5b–d): Incisors symmetrical, 6-toothed; both laciniae mobilis present, articulate, left robust, as long as incisor, 3-toothed, right slender, short, 3-fucate; setal row strong cuspidate and pappose setae; molar columnar, only distal part with triturative surface, partly surrounded by ring of dense short setae; palp 3-articulate, first article short, second and third equal in length, with long simple setae along medial margins.

Paragnath: 2-lobed, medial and apical setulae. Maxilla 1 (Fig. 5e): Inner plate well developed, crescent shaped, setose, medial margin with long plumose setae; outer plate narrow, rectangular, apical margin with 8 strong cuspidate setae in 2 parallel rows; palp 2-articulate, setose, first article short, second large, with long simple setae along medial and apical margin.

Maxilla 2 (Fig. 5f): Inner plate long, narrow, setose, medial and apical margins with long plumose setae, terminal...
Fig. 4. Mouthparts of *Gammarus wilkitzkii* (male). a, buccal area in ventral view (maxillipeds, maxilla 2 and right maxilla 1 removed); b, right mandible; c, incisor and lacinia mobilis of right mandible; d, incisor and lacinia mobilis of left mandible; e, maxilla 1; f, apical spines on outer plate of maxilla 1; g, maxilla 2; h, maxillipeds; i, gnathopod 1; scale bar: 100 μm.
setae cuspidate; outer plate slightly exceeding inner plate, setose, medially with long cuspidate setae, apical margin with plumose setae.

Maxillipeds (Fig. 5g): Inner plate large, crescent shaped, setose, apical margin with long pappose setae, apical margin with single spines and pappose and simple setae; palp strongly exceeding outer plate, with bunches of long simple setae; tip of dactylus rounded, with terminal simple setae.

Fig. 5. Mouthparts of Apherusa glacialis (female). a, buccal area in ventral view (maxillipeds and maxillae 1 and 2 removed); b, right mandible; c, incisor and lacinia mobilis of the right mandible; d, incisor and lacinia mobilis of the left mandible; e, maxilla 1; f, maxilla 2; g, maxillipeds; h, gnathopod 1; scale bar: 20 μm.
Gnathopod 1 (Fig. 5h): Subchelate, palm transverse; propodus with long simple setae along medial and apical margins; dactylus serrate; palm obtuse with single spines.

Gnathopod 2: Equal to gnathopod 1 in size and morphology.

DISCUSSION

Not only morphological peculiarities but also species distribution, *in situ*, and tank observations suggest large differences in the feeding ecology of the four sympagic amphipod species examined in this study, leading to the separation of their trophic niches. Both *Onisimus* species have been collected by means of handnet and suction pump underneath different ice types in the High Arctic ice pack as well as in seasonally ice-covered subarctic seas (Table 1). Highest abundance values have been observed in the multiyear ice near Franz Josef Land (Averintzev, 1993; Poltermann, 1998). Baited traps deployed underneath sea ice generally attracted *O. nanseni*, and only few individuals of *O. glacialis* were captured (Barnard, 1959; George and Paul, 1970; Poltermann, 1997; Broms et al., 2004; pers. obs.). The family Lysianassidae is known as a taxon that includes necrophageous scavengers, which are equipped with a sensitive olfactory apparatus to find carrion from great distances (Dahl, 1979; Sainte-Marie, 1992). Indeed, not all *Onisimus* species are typical scavengers but often feeding generalists (Sainte-Marie, 1992; Vader et al., 2005). Predatory and even cannibalistic behaviour was explicitly observed in *O. nanseni* (George and Paul, 1970) (Table 2). It is likely that other studies that did not identify *Onisimus* to species level but described its carnivorous life style based on lipid analysis (Scott et al., 1999) and feeding experiments (Werner, 1997a), were actually considering *O. nanseni*. The gut of *O. glacialis* contained crustacean parts in minor proportions (Poltermann, 2001). Crustacean remains, such as exuvias, can be ingested as part of detritus lumps. Detritivory has been suggested for both *Onisimus* species (Poltermann, 2001). In the laboratory, *Onisimus* spp. were observed to form large, mucous aggregates of different organic material (pers. obs.). The acquisition and ingestion of ice algae and phytoplankton (phytodetritus), however, has been described only for *O. glacialis* based on gut content analysis (Bradstreet and Cross, 1982; Poltermann, 1997, 2001; Scott et al., 2001; Arndt, 2002; Werner et al., 2002) that feeds on chaeotognaths, copepods, and other crustaceans including conspecifics (Table 2). Based on gut-content analysis it has been furthermore suggested that this amphipod feeds on diatoms, microflagellates, and filamentous algae (Bradstreet and Cross, 1982; Poltermann, 2001). In tank experiments, *G. wilkitzkii* in fact ingested diatoms that were frozen into sea ice (Werner, 1997a; Arndt, 2002), but mouthparts and feeding appendages only worked on the ice to liberate food particles when these reached the ice-water interface (Arndt, 2002). The amphipods’ pronounced grooming behaviour, the dense and long setae on both pairs of antennae and the mouthparts, and the presence of a lamellar crest on the gnathopods suggest suspension feeding as a supplementary mode of food acquisition (Poltermann, 1997; Arndt, 2002). Detritivory was proposed by Poltermann (2001) on the basis of gut-content analysis. In particular perennial sea ice contains high concentrations of detritus throughout the year (Melnikov, 1997). However, gut-content analysis of field-sampled animals only has limited value because it may underestimate the overall importance of algal material (Quigley and Vanderploeg,
Moreover, the differentiation of fresh algae (as consumed by herbivorous species) from fresh phytodetritus and “aged” detritus (as consumed by detritivorous species) in the gut is often intricate (pers. obs.).

Mouthpart morphology indicates for *G. wilkitzkii* an opportunistic feeding mode as a generalist omnivore such as described for other *Gammarus* species (e.g., *Kelly et al.*, 2002). It is the availability and the encounter with a food
item that governs the diet of *G. wilkitzkii* (Arndt, 2002). Its feeding plasticity is reflected in its mouthpart morphology. The mouthparts of *G. wilkitzkii* are interpreted as being able to cope with firm body walls as well as with microparticles. The roughly toothed cutting edges of the incisors and laciniae mobilis imply that the food item is torn apart rather than cut. *Gammarus wilkitzkii* feeds wastefully, suggesting no specialised handling and, therefore, no optimized utilisation of the food source (Arndt, 2002). The strong molars enable *G. wilkitzkii* to reduce the food morsels to small pieces and to crack and grind even hard particles such as the shells of diatoms. The strong apical spines on maxilla 1 may help to loosen food particles from the ice or larger food objects, and the strong setation on maxillae 2 and maxillipeds probably serve as a retrieving chamber for food particles or as grooming devices for the antennae. Both pairs of gnathopods are strong and bear robust dactyls that enable *G. wilkitzkii* to cling to objects, either prey or other food items, or its mate. Tank observations suggest a multipurpose use of the gnathopods in food acquisition (pers. obs.). *Apherusa glacialis* was mainly sampled by different types of nets but was only once attracted by baited traps (Table 1). Several observations confirm its occurrence in deeper water, for example, this amphipod species was collected in vertical net tows from 2500 m to the surface in the Polar Ocean (Barnard, 1959) and by depth-restricted multinet tows at 1000 m in the Greenland Sea (pers. obs. J. Berge) but also in shallow waters far off the ice edge (Arndt and Pavlova, in prep.). Like *O. glacialis* (Sars, 1900; Griffiths and Dillinger, 1981; Melnikov, 1997) *A. glacialis* also was observed in deeper water down to the abyss in Resolute Bay (Canada) (Siferd et al., 1997). In sea ice, *A. glacialis* is one of the most abundant species (e.g., reviewed in Arndt and Lønne, 2002) and inhabits fast seasonal as well as multiyear pack ice. Abundance values are highest in multiyear ice, which also shows highest concentrations of Chl a (Melnikov et al., 2002) and detritus (i.e., particulate organic matter (Melnikov, 1997)). Small-scale distribution analysis confirm higher densities along the ice edges (Hop et al., 2000) and underneath thin, translucent ice floes (Poltermann, 1998).

<table>
<thead>
<tr>
<th>Diet</th>
<th>Prey</th>
<th>Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onisimus nansenii</td>
<td>animal carcass</td>
<td>baited traps</td>
<td>Barnard, 1959; George and Paul, 1970; Poltermann, 1997; Broms et al., 2004</td>
</tr>
<tr>
<td>detritivorous (predatory)</td>
<td>phytodetritus/crustacean remains</td>
<td>gut analysis</td>
<td>Poltermann, 2001</td>
</tr>
<tr>
<td>carnivorous (cannibalistic)</td>
<td>conspecifics</td>
<td>lab. observation</td>
<td>George and Paul, 1970</td>
</tr>
<tr>
<td>Onisimus glacialis</td>
<td>animal carcass</td>
<td>baited traps</td>
<td>Poltermann, 1997</td>
</tr>
<tr>
<td>herbivorous</td>
<td>diatoms/phytodetritus</td>
<td>gut analysis</td>
<td>Braddock and Cross, 1982; Poltermann, 2001</td>
</tr>
<tr>
<td>detritivorous</td>
<td>phytodetritus/crustacean remains</td>
<td>gut analysis</td>
<td>Poltermann, 2001</td>
</tr>
<tr>
<td>carnivorous</td>
<td>crustaceans</td>
<td>gut analysis</td>
<td>Poltermann, 2001</td>
</tr>
<tr>
<td>Onisimus spp.</td>
<td>calanoid copepods</td>
<td>feeding analysis</td>
<td>Werner, 1997a; pers. obs. C. Arndt</td>
</tr>
<tr>
<td>carnivorous (predatory)</td>
<td>copepods; other crustaceans</td>
<td>feeding experiments</td>
<td>Werner, 1997a; pers. obs. C. Arndt</td>
</tr>
<tr>
<td>(cannibalistic)</td>
<td>conspecifics</td>
<td>feeding experiments</td>
<td>Werner, 1997a</td>
</tr>
<tr>
<td>herbivorous</td>
<td>diatoms</td>
<td>lipid analysis</td>
<td>Scott et al., 1999</td>
</tr>
<tr>
<td>Gammarus wilkitzkii</td>
<td>animal carcass</td>
<td>baited traps</td>
<td>Poltermann, 1997</td>
</tr>
<tr>
<td>herbivorous (predatory)</td>
<td>pteropods; other crustaceans</td>
<td>in situ observation</td>
<td>Gulliksen and Lønne, 1989</td>
</tr>
<tr>
<td>(cannibalistic)</td>
<td>conspecifics</td>
<td>feeding experiment</td>
<td>Scott et al., 1999</td>
</tr>
<tr>
<td>detritivorous</td>
<td>diatoms/microflagellates/filamentous algae</td>
<td>gut analysis</td>
<td>Bradstreet and Cross, 1982; Poltermann, 2001</td>
</tr>
<tr>
<td>herbivorous</td>
<td>diatoms/microflagellates/filamentous algae</td>
<td>gut analysis</td>
<td>Bradstreet and Cross, 1982; Poltermann, 2001</td>
</tr>
<tr>
<td>suspension feeder</td>
<td>microparticles</td>
<td>feeding experiment</td>
<td>Werner, 1997b; Arndt, 2002</td>
</tr>
<tr>
<td>Apherusa glacialis</td>
<td>diatoms/filamentous algae</td>
<td>lipid analysis</td>
<td>Scott et al., 1999</td>
</tr>
<tr>
<td>herbivorous-phytodetritivorous</td>
<td>diatoms/filamentous algae</td>
<td>gut analysis</td>
<td>Poltermann, 2001</td>
</tr>
<tr>
<td>detritivorous</td>
<td>diatoms/phytodetritus/crustacean remains</td>
<td>gut analysis</td>
<td>Braddock and Cross, 1982; Poltermann, 2001</td>
</tr>
<tr>
<td>herbivorous</td>
<td>diatoms/microflagellates/filamentous algae</td>
<td>feeding experiment</td>
<td>Werner, 1997b</td>
</tr>
<tr>
<td>—</td>
<td>—/phytoplankton</td>
<td>in situ spec. distribution</td>
<td>Hop et al., 2000</td>
</tr>
</tbody>
</table>
Here, the onset of primary production takes place. The guts contained diatoms, microflagellates, and filamentous algae (Bradstreet and Cross, 1982; Poltermann, 2001) but also amorphous material and occasionally crustacean remains that may derive from ingested detritus and algal lumps (Poltermann, 2001) (Table 2). In feeding experiments, A. glacialis harvests algal cells from the ice (Werner, 1997b). Biochemical signatures in body lipids confirm that A. glacialis preferably feeds on ice and filamentous algae (Scott et al., 1999). Its occurrence in deeper water, however, may indicate a more (phyto-)detritivorous diet on organic material that derives from the euphotic zone. Whether this shift in diet from herbivory to detritivory is seasonally triggered by the availability of food type or by spatial separation from the primary producers in the surface waters is not clear. It has been suggested earlier that A. glacialis descends to the abyss with the onset of polar night (Barnard, 1959). This assumption yet needs verification because it questions the concept of autochthonous versus allochthonous species in the sympagic ecosystem (Gulliksen and Lønne, 1989). If it is an allochthonous species, A. glacialis avoids habitat and, thus, resource partitioning for at least parts of the year.

Mouthpart morphology of A. glacialis supports the feeding on small particles such as algal cells. Incisors and laciniae mobilis on the left and right mandibles are multitoothed and strong and probably assist in working on the ice to loosen the algal material. The triturative molar has a relatively large surface that is capable of grinding hard structures such as diatom shells. The apical spines on maxilla 1 probably co-operate with the apical edges of the mandibles in loosening the ice algae. The pronounced setation on both pairs of maxillae and maxillipeds form a chamber to retrieve the loosened material or filter phytoplankton cells from the water column. The role of the two pairs of identical gnathopods is not known. Because A. glacialis clings to the ice substrate in ventral position, the gnathopods may assist in holding the amphipod firm to the ice substrate. Related Aperusa species sampled in the littoral of subarctic and boreal seas graze on sea weeds, where they are subjected to continuous swell and wave action (Krapp-Schickel and Kulla, 2002).

The review of the morphological features concomitant with ecological observations allow the conclusion that trophic niche overlap among the four co-occurring sympagic amphipods is reduced; each species has evolved a certain trophic strategy for selecting a different set of primary and supplemental food sources:

- O. nanseni is detritivorous (necrophagous)
- O. glacialis is detritivorous (herbivorous)
- G. wilkitzkii is carnivorous (detritivorous)
- A. glacialis is herbivorous (detritivorous).

Food choice plasticity is high in sympagic amphipods. An opportunistic feeding strategy can be seen as an adaptation to a highly variable environment. Food type and availability of “fresh” food changes seasonally and as a consequence, so does concentration and accessibility of different food items. Food particles tend to accumulate in the sea ice matrix. Freeze and thaw cycle, swell, and ice deformation liberates organic matter that has been encapsulated in the ice interior. All four sympagic amphipod species are primarily or facultatively detritivorous. Sea ice literally stores ice algae and (phyto-)detritus all year round like vegetables in a freezer. It is thus believed that food shortage is no issue in the sympagic environment at any time of the year (e.g., Gradinger et al., 1999; Poltermann, 2001).

As already discussed for A. glacialis, habitat and hence (ice-associated) resource partitioning is reduced for parts of the year if the amphipod species seasonally descends to deeper waters. Also, for both Onisimus species, their belonging to the autochthonous group among sympagic organisms has recently been questioned (Arndt and Beuchel, in prep.). The evidence that the autochthonous and allochthonous species concept is no longer valid for at least some ice amphipod species should be addressed in further studies by monitoring interseasonal changes in the sympagic ecosystem as well as in the underlying waters.

ACKNOWLEDGEMENTS

We thank Renate Walter from the University of Hamburg for her skilful SEM-image processing, and The University Centre on Svalbard and Total E & P for their logistical and financial support. We further acknowledge the valuable comments of Oliver Coleman and two anonymous reviewers on an earlier version of this manuscript.

LITERATURE CITED

Bradstreet, M. S. W., and W. E. Cross. 1982. Trophic relationships at high Arctic ice edges.—Arctic 35: 1–12.

Cross, W. E. 1982. Under-ice biota at the Pond Inlet ice edge and in adjacent fast ice areas during spring.—Arctic 35: 13–27.